Login   |   Register   
Join Our Mailing List to keep up-to-date on the PM industry

Iowa State Improves Precious Metal Recovery


Novel process brings most reactive components to the surface (left) and traps the least reactive components at the core (right). (Courtesy Martin Thuo/Iowa State University)

Inspired by nature’s work to build spiky structures in caves, Iowa State University (ISU) researchers have developed a novel technology capable of recovering precious metals from the alloys in electrical waste, such as old phones, computers, and televisions. University start-up funds and part of a U.S. Department of Energy Small Business Innovation Research grant supported development of the technology.

At relatively low temperatures, oxygen is introduced, slowly moving most reactive surfaces to the surface forming stalagmite-like spikes of metal oxides.  The least-reactive components remain in a purified, liquid core surrounded by brittle metal-oxide spikes “to create a so-called ‘ship-in-a-bottle structure,’” said Martin Thuo, the leader of the research project and an associate professor of materials science and engineering at ISU.

ORNL Additive Manufacturing “Mighty Mo”


ORNL researchers used Electron Beam Powder Bed Fusion to produce crack-free molybdenum, proving its viability for Additive Manufacturing. (Courtesy of ORNL/US Dept of Energy)

Oak Ridge National Laboratory, Oak Ridge, Tennessee, proved molybdenum titanium carbide, a refractory metal alloy that can withstand extreme temperature environments, can also be crack free and dense when produced with electron beam powder bed fusion. Molybdenum (Mo) and other refractory alloys are difficult to process through traditional manufacturing because of their high melting temperature, reactivity with oxygen and brittleness.
 

PM Flashback

Volume 12, No. 6, July/August 1983

Headlines

Pacific Sintered Metals Builds New Plant
New RST Alloys
New Wearsurfacing Alloy
P/M Research Program Begun in England
Sound Absorbing Material Made From Aluminum Powder
Gorham to Study Low Pressure HIPing
Fusion Inc. Offers Specialty Metal Powders
New RST Alloys for High Performance Applications
Sherritt Promoting Dispersion Strengthened Nickel for High Temp Uses
Melt Spin Casting Equipment
White House Economist Supports Economic Recovery
September 1 Deadline for Submitting P/M ’84 Papers
New MPIF Materials Standards
Fully Dense P/M Short Course 
P/M Design Clinic
MPIF Fall Management Conference & 39th Annual Meeting
‘83 Who’s Who Underway
MPIF Publishes New Design Guidebook
P/M equipment Directory Published
British P/M Conference
International Symposium on Brasses and Bronzes
People in the News
 

GKN Automotive Driving the Electric Revolution

GKN Automotive reports 13 new electrified models from 10 global brands will enter the market shortly.  The new platforms span four major global automotive manufacturers and range from premium four-wheel drive SUVs to small sedans. The innovative technologies on these models include GKN Automotive’s three in one eDrive systems. The eDrive systems bring together advances in electric motors, transmission, traction inverters, software and controls. The first car using GKN Automotive eDrive technology was put into production over 20 years ago.

Five Penn State Research Teams earn Manufacturing PA Innovation Grants

The Pennsylvania State University, University Park, Pennsylvania, has been awarded five grants through the Pennsylvania Department of Community and Economic Development (DCED) Manufacturing PA initiative. The initiative awarded $2 million across 29 grants in total and will bring together government, industry and higher education in holistic collaboration to spur new technologies and processes in the manufacturing sector. Funded projects provide student engagement and faculty research opportunities with Pennsylvania manufacturers.

RSS
First4344454648505152Last